
6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 1 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

CC BY-SA

6502 Microprocessor Family
Notes about assembly language

Peter Mount, Area51.dev & Contributors

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 2 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

6502 Microprocessor Family
Notes about assembly language

Title 6502 Microprocessor Family
Subtitle Notes about assembly language
Author Peter Mount, Area51.dev & Contributors
CopyrightCC BY-SA

CC BY-SA version 4.0 license
You are free to:

1. Share — copy and redistribute the material in any medium or format
2. Adapt — remix, transform, and build upon the material or any purpose, even commercially.

This license is acceptable for Free Cultural Works.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
1. Attribution — You must give appropriate credit, provide a link to the license, and indicate
if
changes were made. You may do

so in any reasonable manner, but not in any way that suggests the licensor
endorses you or your use.
2. ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same

license as the original.
3. No additional restrictions — You may not apply legal terms or technological measures that
legally restrict others from doing

anything the license permits.

Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is
permitted by an
applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended use. For
example, other
rights such as publicity, privacy, or moral rights may limit how you use the material.

You can read the full license here: https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 3 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

Table of Contents
1 Opcodes

1.1 Arithmetic

1.1.1 ADC Add With Carry

1.1.2 Decrement

1.1.3 Increment

1.1.4 SBC Subtract with Borrow from Accumulator

1.2 Binary operations

1.2.1 AND

1.2.2 BIT

1.2.3 EOR - Exclusive OR

1.2.4 ORA - OR Accumulator with memory

1.2.5 Rotate Bits

1.2.6 TRB & TSB

1.3 Program Flow

1.3.1 Flags

1.3.2 Compare Accumulator

1.3.3 Compare Index Register

1.3.4 Branch

1.3.5 Jump to location

1.3.6 Subroutines

1.4 Registers

1.4.1 LDA

1.4.2 LDX

1.4.3 LDY

1.4.4 STA

1.4.5 STX

1.4.6 STY

1.4.7 STZ

1.4.8 Transfer

1.5 Stack

1.5.1 Pull

1.5.2 Push

1.6 Interrupts

1.6.1 BRK - Software Break

1.6.1.1 BRK on the BBC Micro & Acorn Electron

1.6.2 COP - Co-Processor Enable

1.6.3 RTI

1.6.4 WAI - Wait for Interrupt

1.7 Miscellaneous Instructions

1.7.1 Block Move

1.7.2 XCE

1.7.3 NOP

1.7.4 Reserved

1.7.5 STP - Stop Processor

2 reference

2.1 Instruction List by name

2.2 Instruction List by opcode

2.3 Opcode Matrix

This section covers assembly language for the 6502 Microprocessor family including the 6510, 65C02 & 65816 processors.

1 - Opcodes
Instruction Set
In this section we cover every available instruction for both 8-bit & 16-bit processors.

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 4 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.1 - Arithmetic
Arithmetic operations

1.1.1 - ADC Add With Carry
Add With Carry
Adds the data in the operand with the contents of the accumulator.
Add 1 to the result if the carry flag is set.
Store the final result in
the accumulator.

Binary/Decimal mode
If the d flag is clear then binary addition is performed.
If the d flag set then Binary Coded Decimal (BCD) addition is performed.

Data size
On all processors, the data added from memory is 8-bit.
However, for 16-bit processors with the m flag is clear then the data added
is 16-bit
with the low-order 8-bits at the effective address and the high-order 8-bits at the effective address plus one.

Multi-precision arithmetic
In multi-precision (multi-word) arithmetic, the carry flag should be cleared before the low-order words are added.
The addition will
generate a new carry flag value based on that addition which will then be passed on to the next word.

For example, to add 1 to a 16-bit value at &70 on 8-bit processors:

1 CLC ; Clear carry before first addition

2 LDA &70 ; Add 1 to low-order byte

3 ADC #1

4 STA &70

5 LDA &71 ; Add 0 to high order byte

6 ADC #0 ; This will add 1 if carry was set

7 STA &71 ; in the low-order byte

Flags Affected

Flags n v - - - - z c

n Set if most-significant bit of result is set
v Set if signed overflow
z Set if result is zero
c Set if unsigned overflow, clear if valid unsigned result

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

ADC #const 69 x x x 2 2 Immediate

ADC addr 6D x x x 3 4 Absolute

ADC long 6F x 4 5 Absolute Long

ADC dp 65 x x x 2 3 Direct Page

ADC (dp) 72 x x 2 5 Direct Page Indirect

ADC [dp] 67 x 2 6 Direct Page Indirect Long

ADC addr,X 7D x x x 3 4 Absolute Indexed X

ADC long,X 7F x 4 5 Absolute Long Indexed X

ADC addr,Y 79 x x x 3 4 Absolute Indexed Y

ADC dp,X 75 x x x 2 4 Direct Page Indexed X

ADC (dp,X) 61 x x x 2 6 Direct Page Indexed Indirect X

ADC (dp),Y 71 x x x 2 5 Direct Page Indirect Indexed Y

ADC [dp],Y 77 x 2 6 Direct Page Indirect Long Indexed Y

ADC sr,S 63 x 2 4 Stack Relative

ADC (sr,S),Y 73 x 2 7 Stack Relative Indirect Indexed Y

1 2, 5

2, 5

2, 5

2, 3, 5

2, 3, 5

2, 3, 5

2, 4, 5

2, 5

2, 4, 5

2, 3, 5

2, 3, 5

2, 3, 4, 5

2, 3, 5

2, 5

2, 5

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 5 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

Notes:
1. 65816: Add 1 byte if m=0 (16-bit memory/accumulator)
2. 65816: Add 1 cycle if m=0 (16-bit memory/accumulator)
3. 65816: Add 1 cycle if low byte of Direct Page register is not 0
4. Add 1 cycle if adding index crosses a page boundary
5. 65C02: Add 1 cycle if d=1

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 6 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.1.2 - Decrement
Decrement by one a register or a memory location
The decrement instructions add one to either a register or a memory location.

Unlike subtracting 1 with ADC, these instructions does not use the Carry flag in any way.
You can test for wraparound only by
testing after every decrement to see if the result
is zero or negative.

The d flag does not affect these instructions. The decrement is always in binary mode.

For all processors, the decrement is an 8-bit operation unless m=0 on the 65816 in which case the decrement is 16-bit.

DEC - Decrement
Decrement by 1 the contents of the memory location or accumulator.

DEX - Decrement Index Register X
Decrement by 1 the X index register.

DEY - Decrement Index Register Y
Decrement by 1 the Y index register.

Flags Affected

Flags n - - - - - z -

n Set if most significant bit of the result is set
z Set if result is zero

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

DEC A 3A x x 1 2 Accumulator

DEC addr CE x x x 3 6 Absolute

DEC dp C6 x x x 2 5 Direct Page

DEC addr,X DE x x x 3 7 Absolute Indexed X

DEC dp,X D6 x x x 2 6 Direct Page Indexed X

DEX CA x x x 1 2 Implied

DEY 88 x x x 1 2 Implied

Notes:
1. 65816: Add 2 cycles if m=0 (16-bit memory/accumulator)
2. 65816: Add 1 cycle if low byte of Direct Page register is not 0
3. 65C02: Subtract 1 cycle if no page boundary is crossed

1

1, 2

1, 3

1, 2

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 7 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.1.3 - Increment
Increment by one a register or a memory location
The increment instructions add one to either a register or a memory location.

Unlike adding 1 with ADC, these instructions does not use the Carry flag in any way.
You can test for wraparound only by testing
after every increment to see if the result
is zero or positive.

The d flag does not affect these instructions. The increment is always in binary mode.

For all processors, the increment is an 8-bit operation unless m=0 on the 65816 in which case the increment is 16-bit.

INC - Increment
Increment by 1 the contents of the memory location or accumulator.

INX - Increment Index Register X
Increment by 1 the X index register.

INY - Increment Index Register Y
Increment by 1 the Y index register.

Flags Affected

Flags n - - - - - z -

n Set if most significant bit of the result is set
z Set if result is zero

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

INC A 1A x x 1 2 Accumulator

INC addr EE x x x 3 6 Absolute

INC dp E6 x x x 2 5 Direct Page

INC addr,X FE x x x 3 7 Absolute Indexed X

INC dp,X F6 x x x 2 6 Direct Page Indexed X

INX E8 x x x 1 2 Implied

INY C8 x x x 1 2 Implied

Notes:
1. 65816: Add 2 cycles if m=0 (16-bit memory/accumulator)
2. 65816: Add 1 cycle if low byte of Direct Page register is not 0
3. 65C02: Subtract 1 cycle if no page boundary is crossed

1

1, 2

1, 3

1, 2

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 8 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.1.4 - SBC Subtract with Borrow from Accumulator
Subtract with Borrow
Subtracts the data in the operand with the contents of the accumulator.
Subtract 1 from the result if the carry flag is clear.
Store
the final result in the accumulator.

Binary/Decimal mode
If the d flag is clear then binary subtraction is performed.
If the d flag set then Binary Coded Decimal (BCD) subtraction is
performed.

Data size
On all processors, the data subtracted from memory is 8-bit.
However, for 16-bit processors with the m flag is clear then the data
subtracted is 16-bit
with the low-order 8-bits at the effective address and the high-order 8-bits at the effective address plus one.

Multi-precision arithmetic
In multi-precision (multi-word) arithmetic, the carry flag should be set before the low-order words are subtracted.
The subtraction
will generate a new carry flag value based on that subtraction which will then be passed on to the next word.

For example, to subtract 1 from a 16-bit value at &70 on 8-bit processors:

1 SEC ; Set carry before first subtraction

2 LDA &70 ; Subtract 1 from low-order byte

3 SBC #1

4 STA &70

5 LDA &71 ; Subtract 0 to high order byte

6 SBC #0 ; This will subtract 1 if carry was clear

7 STA &71 ; from the low-order byte

Flags Affected

Flags n v - - - - z c

n Set if most-significant bit of result is set
v Set if signed overflow
z Set if result is zero
c Set if unsigned borrow not required, clear if required

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

SBC #const E9 x x x 2 2 Immediate

SBC addr ED x x x 3 4 Absolute

SBC long EF x 4 5 Absolute Long

SBC dp E5 x x x 2 3 Direct Page

SBC (dp) F2 x x 2 5 Direct Page Indirect

SBC [dp] E7 x 2 6 Direct Page Indirect Long

SBC addr,X FD x x x 3 4 Absolute Indexed X

SBC long,X FF x 4 5 Absolute Long Indexed X

SBC addr,Y F9 x x x 3 4 Absolute Indexed Y

SBC dp,X F5 x x x 2 4 Direct Page Indexed X

SBC (dp,X) E1 x x x 2 6 Direct Page Indexed Indirect X

SBC (dp),Y F1 x x x 2 5 Direct Page Indirect Indexed Y

SBC [dp],Y F7 x 2 6 Direct Page Indirect Long Indexed Y

SBC sr,S E3 x 2 4 Stack Relative

SBC (sr,S),Y F3 x 2 7 Stack Relative Indirect Indexed Y

Notes:
1. 65816: Add 1 byte if m=0 (16-bit memory/accumulator)
2. 65816: Add 1 cycle if m=0 (16-bit memory/accumulator)
3. 65816: Add 1 cycle if low byte of Direct Page register is not 0
4. Add 1 cycle if adding index crosses a page boundary
5. 65C02: Add 1 cycle if d=1

1 2, 5

2, 5

2, 5

2, 3, 5

2, 3, 5

2, 3, 5

2, 4, 5

2, 5

2, 4, 5

2, 3, 5

2, 3, 5

2, 3, 4, 5

2, 3, 5

2, 5

2, 5

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 9 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.2 - Binary operations
Operations that work in Binary or individual Bits

1.2.1 - AND
And Accumulator with Memory
AND performs a logical And of the value in the accumulator with that of the memory location with the result stored
in the
accumulator.

The result will be each bit in the accumulator will be set ONLY if that same bit was set in the original accumulator
value and the
memory. If the bits were different then the resultant bit will be 0.

AND truth table

Second Operand

First Operand
0 1

00 0
10 1

For 8-bit processors n has the value of bit 7 and v the value of bit 6 of the memory location.

For 16-bit processors, when m=0, n has the value of bit 15 and v the value of bit 14 of the memory location.

Second it performs a logical AND of the memory and the accumulator.
If the result is zero the z flag is set.

In both operations, the contents of the accumulator and memory are not modified.

Flags Affected

Flags n - - - - - z -

n Set if most significant bit of result is set
z Set if result is zero, otherwise clear

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

AND #const 29 x x x 2 2 Immediate

AND addr 2D x x x 3 4 Absolute

AND long 2F x 4 5 Absolute Long

AND dp 25 x x x 2 3 Direct Page

AND (dp) 32 x x 2 5 Direct Page Indirect

AND [dp] 27 x 2 6 Direct Page Indirect Long

AND addr,X 3D x x x 3 4 Absolute Indexed X

AND long,X 3F x 4 5 Absolute Long Indexed X

AND addr,Y 39 x x x 3 4 Absolute Indexed Y

AND dp,X 35 x x x 2 4 Direct Page Indexed X

AND (dp,X) 21 x x x 2 6 Direct Page Indexed Indirect X

AND (dp),Y 31 x x x 2 5 Direct Page Indirect Indexed Y

AND [dp],Y 37 x 2 6 Direct Page Indirect Long Indexed Y

AND sr,S 23 x 2 4 Stack Relative

AND (sr,S),Y 33 x 2 7 Stack Relative Indirect Indexed Y

Notes:
1. 65816: Add 1 byte if m=0 (16-bit memory/accumulator)
2. 65816: Add 1 cycle if m=0 (16-bit memory/accumulator)
3. 65816: Add 1 cycle if low byte of Direct Page register is not 0
4. Add 1 cycle if adding index crosses a page boundary

1 2

2

2

2, 3

2, 3

2, 3

2, 4

2

2, 4

2, 3

2, 3

2, 3, 4

2, 3

2

2

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 10 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.2.2 - BIT
Test Memory Bits against Accumulator
Bit is a dual-purpose instruction which performs operations against the accumulator and memory.
It is usually used immediately
preceding a conditional branch instruction

First it set's the n flag to reflect the value of the high bit of the data in memory
and the v flag to the next-to-highest bit of that data.

For 8-bit processors n has the value of bit 7 and v the value of bit 6 of the memory location.

For 16-bit processors, when m=0, n has the value of bit 15 and v the value of bit 14 of the memory location.

Second it performs a logical AND of the memory and the accumulator.
If the result is zero the z flag is set.

In both operations, the contents of the accumulator and memory are not modified.

Flags Affected

Flags n v - - - - z -

n Takes value of most significant bit of memory data, not in immediate addressing
v Takes value of the next-to-highest bit of memory data, not in immediate addressing
z Set if logical AND of memory & accumulator is zero, otherwise clear

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

BIT #const 89 x x 2 2 Immediate

BIT addr 2C x x x 3 4 Absolute

BIT dp 24 x x x 2 5 Direct Page

BIT addr,X 3C x x 3 4 Absolute Indexed X

BIT dp,X 34 x x 2 4 Direct Page Indexed X

Notes:
1. 65816: Add 1 byte if m=0 (16-bit memory/accumulator)
2. 658116: Add 1 cycle if m=0 (16-bit memory/accumulator)
3. 65816: Add 1 cycle if low byte of Direct Page register is not 0
4. Add 1 cycle if adding index crosses a page boundary

1 2

2

2, 3

2, 4

2, 3

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 11 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.2.3 - EOR - Exclusive OR
Exclusive-OR Accumulator with Memory
EOR performs a bitwise logical Exclusive-OR of the value in the accumulator with that of the memory location with the result stored
in the accumulator.

The result will be each bit in the accumulator will be set ONLY if that same bit in the original accumulator
value and the memory
differ. If the bits were the same then the resultant bit will be 0.

Exclusive OR truth table

Second Operand

First Operand
0 1

00 1
11 0

For 8-bit processors n has the value of bit 7 and v the value of bit 6 of the memory location.

For 16-bit processors, when m=0, n has the value of bit 15 and v the value of bit 14 of the memory location.

Second it performs a logical AND of the memory and the accumulator.
If the result is zero the z flag is set.

In both operations, the contents of the accumulator and memory are not modified.

Flags Affected

Flags n - - - - - z -

n Set if most significant bit of result is set
z Set if result is zero, otherwise clear

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

EOR #const 49 x x x 2 2 Immediate

EOR addr 4D x x x 3 4 Absolute

EOR long 4F x 4 5 Absolute Long

EOR dp 45 x x x 2 3 Direct Page

EOR (dp) 52 x x 2 5 Direct Page Indirect

EOR [dp] 47 x 2 6 Direct Page Indirect Long

EOR addr,X 5D x x x 3 4 Absolute Indexed X

EOR long,X 5F x 4 5 Absolute Long Indexed X

EOR addr,Y 59 x x x 3 4 Absolute Indexed Y

EOR dp,X 55 x x x 2 4 Direct Page Indexed X

EOR (dp,X) 41 x x x 2 6 Direct Page Indexed Indirect X

EOR (dp),Y 51 x x x 2 5 Direct Page Indirect Indexed Y

EOR [dp],Y 57 x 2 6 Direct Page Indirect Long Indexed Y

EOR sr,S 43 x 2 4 Stack Relative

EOR (sr,S),Y 53 x 2 7 Stack Relative Indirect Indexed Y

Notes:
1. 65816: Add 1 byte if m=0 (16-bit memory/accumulator)
2. 65816: Add 1 cycle if m=0 (16-bit memory/accumulator)
3. 65816: Add 1 cycle if low byte of Direct Page register is not 0
4. Add 1 cycle if adding index crosses a page boundary

1 2

2

2

2, 3

2, 3

2, 3

2, 4

2

2, 4

2, 3

2, 3

2, 3, 4

2, 3

2

2

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 12 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.2.4 - ORA - OR Accumulator with memory
OR Accumulator with Memory
ORA performs a bitwise logical OR of the value in the accumulator with that of the memory location with the result stored
in the
accumulator.

The result will be each bit in the accumulator will be set if either the same bit in the original accumulator
value and the memory are
set.

OR truth table

Second Operand

First Operand
0 1

00 1
11 1

For 8-bit processors n has the value of bit 7 and v the value of bit 6 of the memory location.

For 16-bit processors, when m=0, n has the value of bit 15 and v the value of bit 14 of the memory location.

Second it performs a logical AND of the memory and the accumulator.
If the result is zero the z flag is set.

In both operations, the contents of the accumulator and memory are not modified.

Flags Affected

Flags n - - - - - z -

n Set if most significant bit of result is set
z Set if result is zero, otherwise clear

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

ORA #const 09 x x x 2 2 Immediate

ORA addr 0D x x x 3 4 Absolute

ORA long 0F x 4 5 Absolute Long

ORA dp 05 x x x 2 3 Direct Page

ORA (dp) 12 x x 2 5 Direct Page Indirect

ORA [dp] 07 x 2 6 Direct Page Indirect Long

ORA addr,X 1D x x x 3 4 Absolute Indexed X

ORA long,X 1F x 4 5 Absolute Long Indexed X

ORA addr,Y 19 x x x 3 4 Absolute Indexed Y

ORA dp,X 15 x x x 2 4 Direct Page Indexed X

ORA (dp,X) 01 x x x 2 6 Direct Page Indexed Indirect X

ORA (dp),Y 11 x x x 2 5 Direct Page Indirect Indexed Y

ORA [dp],Y 17 x 2 6 Direct Page Indirect Long Indexed Y

ORA sr,S 03 x 2 4 Stack Relative

ORA (sr,S),Y 13 x 2 7 Stack Relative Indirect Indexed Y

Notes:
1. 65816: Add 1 byte if m=0 (16-bit memory/accumulator)
2. 65816: Add 1 cycle if m=0 (16-bit memory/accumulator)
3. 65816: Add 1 cycle if low byte of Direct Page register is not 0
4. Add 1 cycle if adding index crosses a page boundary

1 2

2

2

2, 3

2, 3

2, 3

2, 4

2

2, 4

2, 3

2, 3

2, 3, 4

2, 3

2

2

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 13 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.2.5 - Rotate Bits
Test Memory Bits against Accumulator
The rotate instructions shifts the contents of the accumulator or memory location one bit either to the left or right.

The ROL & ROR instructions will shift in the carry flag into the value.
The ASL & LSR instructions shift in 0.
The carry flag is set to the
bit that was shifted out of the value.

On all processors the data shifted is 8 bits.

On the 65816 with m=0, the data shifted is 16 bits.

Effect on memory for 8 bit operations.

Operation Opcode 7 6 5 4 3 2 1 0
Shift left ASL C0
Shift left with carry ROL CC
Shift right LSR 0C
Shift right with carryROR CC

ASL - Shift Memory or Accumulator Left
Shift the value left one bit.
The left most bit is transferred into the carry flag.
The right most bit is cleared.

The arithmetic result of the operation is an unsigned multiplication by two.

LSR - Logical Shift Memory or Accumulator Right
Shift the value right one bit.
The right most bit is transferred into the carry flag.
The left most bit is cleared.

The arithmetic result of the operation is an unsigned division by two.

ROL - Rotate Memory or Accumulator Left
Shift the value left one bit.
The right most bit is set to the initial value of the carry flag.
The left most bit is transferred into the carry
flag.

ROR - Rotate Memory or Accumulator Right
Shift the value right one bit.
The left most bit is set to the initial value of the carry flag.
The right most bit is transferred into the
carry flag.

Multi-word shifts
These instructions can be combined to handle multiple word values:

Multi-word shift left
To shift left multiple words, use ASL for the first operation then ROL for the subsequent words.

1 ; Shift 16-bit value at &70 left 1 bit.

2 ; This is effectively a multiplication by 2

3 ASL &70 ; Shift left low-order byte

4 ROL &71 ; Shift left high-order byte

5 ; Carry will be set if we overflowed

6

For higher precision simply add an additional ROL for the next order byte.

Multi-word shift right
To shift right multiple words, use LSR for the first operation then ROR for the subsequent words.
Unlike shifting left, here we have
to start with the high-order byte first.

1 ; Shift 16-bit value at &70 right 1 bit.

2 ; This is effectively a division by 2

3 LSR &71 ; Shift right high-order byte

4 ROR &70 ; Shift right low-order byte

5 ; Carry will have the remainder

6

For higher precision just start the LSR on the higher order byte & use ROL for each lower order.

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 14 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

Flags Affected

Flags n - - - - - z c

n Set if the most significant bit of the result is set
z Set if the result is zero
c The value of the bit shifted out of the result

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

ASL A 0A x x x 1 2 Accumulator

ASL addr 0E x x x 3 6 Absolute

ASL dp 06 x x x 2 5 Direct Page

ASL addr,X 1E x x x 3 7 Absolute Indexed X

ASL dp,X 16 x x x 2 6 Direct Page Indexed X

LSR A 4A x x x 1 2 Accumulator

LSR addr 4E x x x 3 6 Absolute

LSR dp 46 x x x 2 5 Direct Page

LSR addr,X 5E x x x 3 7 Absolute Indexed X

LSR dp,X 56 x x x 2 6 Direct Page Indexed X

ROL A 2A x x x 1 2 Accumulator

ROL addr 2E x x x 3 6 Absolute

ROL dp 26 x x x 2 5 Direct Page

ROL addr,X 3E x x x 3 7 Absolute Indexed X

ROL dp,X 36 x x x 2 6 Direct Page Indexed X

ROR A 6A x x x 1 2 Accumulator

ROR addr 6E x x x 3 6 Absolute

ROR dp 66 x x x 2 5 Direct Page

ROR addr,X 7E x x x 3 7 Absolute Indexed X

ROR dp,X 76 x x x 2 6 Direct Page Indexed X

Notes:
1. 65816: Add 2 cycles if m=0 (16-bit memory/accumulator)
2. 65816: Add 1 cycle if low byte of Direct Page register is not 0
3. 65C02: Subtract 1 cycle if no page boundary is crossed

1, 2

1, 3

1, 2

1, 2

1, 3

1, 2

1, 2

1, 3

1, 2

1, 2

1, 3

1, 2

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 15 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.2.6 - TRB & TSB
Test & Set/Reset Memory Bits against Accumulator

TRB - Test & Reset memory against Accumulator
TRB logically AND's the complement of the accumulator with the data at an address and stores the result in
that address.

This has the effect of clearing each memory bit which is set in the accumulator, leaving the other bits unchanged.

The z flag is set based on a different operation. It's set if the memory location once set logically AND the
accumulator (not it's
compliment) is zero.

For 8-bit processors or when m=1, the values in the accumulator & memory are 8-bit.

For 16-bit processors, when m=0, the values in the accumulator & memory are 16-bit.

TSB - Test & Set memory against Accumulator
TSB is identical to TRB except it sets the bits defined in the Accumulator not reset them.

Flags Affected

Flags - - - - - - z -

z Set if logical AND of memory & accumulator is zero, otherwise clear

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

TRB addr 1C x x 3 6 Absolute

TRB dp 14 x x 2 5 Direct Page

TSB addr 0C x x 3 6 Absolute

TSB dp 04 x x 2 5 Direct Page

Notes:
1. 65816: Add 2 cycles if m=0 (16-bit memory/accumulator)
2. 65816: Add 1 cycle if low byte of Direct Page register is not 0

1

1, 2

1

1, 2

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 16 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.3 - Program Flow
Branch & Jumps

1.3.1 - Flags
Flag manipulation
The flag instructions manipulate some of the flags in the status register.

CLC - Clear Carry Flag
CLC is used prior to addition with the ADC instruction to keep the carry flag affecting the result.

On the 6502 a CLC before a BCC instruction can be used to implement a branch always, which is relocatable.
This is unnecessary
since the 65C02 with it's BRA instruction.

On the 16-bit processors a CLC followed by XCE instruction is used to switch the 65802 & 65816 processors into
native mode.

SEC - Set Carry Flag
SEC is used prior to subtraction using the SBC instruction to keep the carry flag affecting the result.

On the 16-bit processors a SEC followed by XCE instruction is used to switch the 65802 & 65816 processors into 6502
emulation
mode.

CLD - Clear Decimal Mode
CLD is used to switch the processors into binary mode so that the ADC & SBC instructions will perform binary not BCD
arithmetic.

SED - Set Decimal Mode
SED is used to switch the processors into decimal mode so that the ADC & SBC instructions will perform BCD not
binary arithmetic.

CLI - Clear Interrupt Disable Flag
CLI is used to re-enable hardware interrupts.

When the processor starts the interrupt handler it sets the i flag to prevent another interrupt to occur during that
handler.
If the
handler want's to allow interrupts to happen whilst it's handling a previous one it can use CLI to re-enable
them.
The handler
doesn't need to use CLI as the RTI (ReTurn from Interrupt) instruction will clear the i flag
automatically.

In user code, CLI can be used to re-enable interrupts after an SEI instruction.
This is usually used during time-critical code or code
that cannot be interrupted.

SEI - Clear Interrupt Disable Flag
SEI is used to disable hardware interrupts.

When the i bit is set, maskable hardware interrupts are ignored.
When the processor starts the interrupt handler it sets the i flag to
prevent another interrupt to occur during that
handler.
If the handler want's to allow interrupts to happen whilst it's handling a
previous one it can use CLI to re-enable
them.
The handler doesn't need to use CLI as the RTI (ReTurn from Interrupt) instruction
will clear the i flag
automatically.

In user code, SEI can be used to disable interrupts when it needs to run time-critical code or code that cannot be
interrupted.
It
should then use CLI once it's finished that time-critical code.

CLV - Clear Overflow Flag
CLV clears the overflow flag.

Unlike other clear flag instructions, there is no set overflow flag available.
The only way the overflow flag can be set is either:

The BIT instruction will set overflow if bit 6 of the mask & memory is set
The 65816 REP instruction can clear the overflow
Use the Overflow pin on the processor. This is rarely used & is often not even connected.

On the 6502 a CLC before a BVC instruction can be used to implement a branch always, which is relocatable.
This is unnecessary
since the 65C02 with it's BRA instruction.

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 17 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

REP - Reset Status Bits
For each bit set in the operand byte, reset the corresponding bit in the status register.
For each bit not set in the operand byte
leaves the corresponding bit unchanged.

This instruction lets you clear any flag or flags in a single instruction.
It is the only direct means of resetting the m & x flags.

In 6502 emulation mode (e=1) neither the b flag or bit 5 (the 6502's non-flag bit) is affected by this instruction.

Flags Affected

7 6 5 4 3 2 1 0

6502 emulation mode e=1 n v d i z c

65816 native mode e=0 n v m x d i z c

SEP - Set Status Bits
For each bit set in the operand byte, set the corresponding bit in the status register.
For each bit not set in the operand byte leaves
the corresponding bit unchanged.

This instruction lets you set any flag or flags in a single instruction.
It is the only direct means of setting the m & x flags.

In 6502 emulation mode (e=1) neither the b flag or bit 5 (the 6502's non-flag bit) is affected by this instruction.

The bit's in the operand & their relationship with the status register is the same as the REP instruction.

Instructions

Syntax Action

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

CLC Clear Carry 18 x x x 1 2 Implied

SEC Set Carry 38 x x x 1 2 Implied

CLD Clear Decimal D8 x x x 1 2 Implied

SED Set Decimal F8 x x x 1 2 Implied

CLI Enable hardware interrupts 58 x x x 1 2 Implied

SEI Disable hardware interrupts 78 x x x 1 2 Implied

CLV Clear Overflow B8 x x x 1 2 Implied

REP #const Reset status bits C2 x 2 3 Immediate

SEP #const Set status bits E2 x 2 3 Immediate

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 18 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.3.2 - Compare Accumulator
Compare Accumulator with Memory
CMP subtracts the data at the address in the operand from the contents of the accumulator,
setting the n, z & c flags based on the
result.
The Accumulator & Memory are unaffected by this operation.

Data size
On all processors, the data added from memory is 8-bit.
However, for 16-bit processors with the m flag is clear then the data added
is 16-bit
with the low-order 8-bits at the effective address and the high-order 8-bits at the effective address plus one.

Flags Affected

Flags n - - - - - z c

n Set if most-significant bit of result is set
z Set if result is zero
c Set if register value greater than or equal or Cleared if less than memory value

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

CMP #const C9 x x x 2 2 Immediate

CMP addr CD x x x 3 4 Absolute

CMP long CF x 4 5 Absolute Long

CMP dp C5 x x x 2 3 Direct Page

CMP (dp) D2 x x 2 5 Direct Page Indirect

CMP [dp] C7 x 2 6 Direct Page Indirect Long

CMP addr,X DD x x x 3 4 Absolute Indexed X

CMP long,X DF x 4 5 Absolute Long Indexed X

CMP addr,Y D9 x x x 3 4 Absolute Indexed Y

CMP dp,X D5 x x x 2 4 Direct Page Indexed X

CMP (dp,X) C1 x x x 2 6 Direct Page Indexed Indirect X

CMP (dp),Y D1 x x x 2 5 Direct Page Indirect Indexed Y

CMP [dp],Y D7 x 2 6 Direct Page Indirect Long Indexed Y

CMP sr,S C3 x 2 4 Stack Relative

CMP (sr,S),Y D3 x 2 7 Stack Relative Indirect Indexed Y

Notes:
1. 65816: Add 1 byte if m=0 (16-bit memory/accumulator)
2. 65816: Add 1 cycle if m=0 (16-bit memory/accumulator)
3. 65816: Add 1 cycle if low byte of Direct Page register is not 0
4. Add 1 cycle if adding index crosses a page boundary

1 2

2

2

2, 3

2, 3

2, 3

2, 4

2

2, 4

2, 3

2, 3

2, 3, 4

2, 3

2

2

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 19 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.3.3 - Compare Index Register
Compare Index Register with Memory
The CPX & CPY instructions subtracts the data at the address in the operand from the contents of the relevant index register,
setting the n, z & c flags based on the result.
The register & Memory are unaffected by this operation.

The primary use of the CPX or CPY instructions is to test the value of the index register against loop boundaries.

Data size
On all processors, the data added from memory is 8-bit.
However, for 16-bit processors with the m flag is clear then the data added
is 16-bit
with the low-order 8-bits at the effective address and the high-order 8-bits at the effective address plus one.

Flags Affected

Flags n - - - - - z c

n Set if most-significant bit of result is set
z Set if result is zero
c Set if register value greater than or equal or Cleared if less than memory value

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

CPX #const E0 x x x 2 2 Immediate

CPX addr EC x x x 3 4 Absolute

CPX dp E4 x x x 2 3 Direct Page

CPY #const C0 x x x 2 2 Immediate

CPY addr CC x x x 3 4 Absolute

CPY dp C4 x x x 2 3 Direct Page

Notes:
1. 65816: Add 1 byte if m=0 (16-bit memory/accumulator)
2. 65816: Add 1 cycle if m=0 (16-bit memory/accumulator)
3. 65816: Add 1 cycle if low byte of Direct Page register is not 0

1 2

2

2, 3

1 2

2

2, 3

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 20 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.3.4 - Branch
Perform a test & branch based on that test
The branch instructions perform a test against one of the processor's flags.
Depending on the instruction a branch is taken if it is
either clear or set.

If the branch is taken, a 1-byte signed displacement in the second byte of the instruction is sign-extended to 16-bits
and added to
the Program Counter.
If the branch is not taken then the instruction immediately following the 2-byte instruction is executed.

The allowable range of the displacement is -128 to +127 from the instruction immediately following the branch.

BCC - Branch if Carry Clear
BCC tests the Carry flag and branches if it is clear.

It can be used in several ways:

Test the result of a shift into the carry
Determine if the result of a comparison is less than

Some assemblers accept BLT (Branch if Less Than) as an alternate mnemonic for
BCC.

BCS - Branch if Carry Set
BCS tests the Carry flag and branches if it is set.

It can be used in several ways:

Test the result of a shift into the carry
Determine if the result of a comparison is greater than or equal

Some assemblers accept BGE (Branch if Greater Than or Equal) as an alternate mnemonic for
BCS.

BEQ - Branch if Equal
BEQ tests the Zero flag and branches if it is set.

It can be used in several ways:

Test the result of a comparison is equal
Test the result of an Increment or Decrement operation is zero, useful in loops.
Test the value just loaded is zero
Test the result of an arithmetic operation is zero

BNE - Branch if Not Equal
BNE tests the Zero flag and branches if it is clear.

It can be used in several ways:

Test the result of a comparison is not equal
Test the result of an Increment or Decrement operation is not zero
Test the value just loaded is not zero
Test the result of an arithmetic operation is not zero

BMI - Branch if Minus
BMI tests the Negative flag and branches if it is set.
The high bit of the value most recently affected will set the N flag.
On 8-bit
operations this is bit 7.
On 16-bit operations (65816 only) this is bit 15.

This is normally used to determine if a two's-complement value is negative but can also be used
in a loop to determine if zero has
been passed when looping down through zero
(the initial value must be positive)

BPL - Branch if Positive
BPL tests the Negative flag and branches if it is clear.
The high bit of the value most recently affected will set the N flag.
On 8-bit
operations this is bit 7.
On 16-bit operations (65816 only) this is bit 15.

This is normally used to determine if a two's-complement value is positive
or if the high bit of the value is clear.

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 21 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

BVC - Branch if Overflow Clear
BVC tests the Overflow flag and branches if it is clear.

On the 6502 only 3 instructions alter the overflow flag: ADC, SBC & CLV.

On the 65C02 the BIT instruction also alters the overflow flag.

The PLP & RTI alter the flags as they restore all flags from the stack.

On the 65816 the SEP & REP instructions modify the v flag.

On some processors there's a Set Overflow hardware signal available,
but on many systems there is no connection to that pin.

BVS - Branch if Overflow Set
BVS tests the Overflow flag and branches if it is set.
It has the same limitations as the BVC instruction.

Flags Affected

None.

Instructions

Syntax Branch if

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

BCC nearlabel Carry clear 90 x x x 2 2 Program Counter Relative

BCS nearlabel Carry set B0 x x x 2 2 Program Counter Relative

BEQ nearlabel Equal, z=1 F0 x x x 2 2 Program Counter Relative

BNE nearlabel Not Equal, z=0 D0 x x x 2 2 Program Counter Relative

BMI nearlabel Minus, n=1 30 x x x 2 2 Program Counter Relative

BPL nearlabel Positive, n=0 10 x x x 2 2 Program Counter Relative

BVC nearlabel Overflow clear, v=0 50 x x x 2 2 Program Counter Relative

BVS nearlabel Overflow set, v=1 70 x x x 2 2 Program Counter Relative

Notes:
1. Add 1 cycle if branch taken
2. Add 1 more cycle if branch taken crosses page boundary on a 6502, 65C02 or a 65816 in 6502 emulation mode (e=1)

1, 2

1, 2

1, 2

1, 2

1, 2

1, 2

1, 2

1, 2

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 22 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.3.5 - Jump to location
Transfer control to the address specified by the operand field.
The branch instructions sets the Program Counter to a new value from which the next instruction will be taken.

JMP - Jump to location
The program counter is loaded with the target address. If a long JMP is executed the bank is loaded from the third
byte of the
address.

Some assemblers accept JML as an alternate mnemonic for JMP long.

BRA - Branch Always
A branch is always taken, no test is performed. It is equivalent to a JMP instruction, except that as it
uses a signed displacement it is
only 2 bytes in length instead of 3 for JMP.
In addition, because it uses displacements, code using BRA is relocatable.

The 1-byte signed displacement in the second byte of the instruction is sign-extended to 16-bits
and added to the Program
Counter.
If the branch is not taken then the instruction immediately following the 2-byte instruction is executed.

The allowable range of the displacement is -128 to +127 from the instruction immediately following the branch.

BRA was introduced with the 65C02 processor.

BRL - Branch Always Long
A branch is always taken, no test is performed. It is equivalent to a BRA instruction, except that
BRL is a 3 byte instruction. The two
bytes after the opcode form a 16-bit signed displacement
from the Program Counter.

The allowable range of the displacement is anywhere within the current 64K program bank.

The advantage of BRL is that it makes code relocatable,
although it is 1 cycle slower than the absolute JMP instruction.

BRL was introduced with the 65802 processor.

Flags Affected

None.

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

BRA nearlabel 80 x x 2 3 Program Counter Relative

BRL label 82 x 3 4 Program Counter Relative Long

JMP addr 4C x x x 3 3 Absolute

JMP (addr) 6C x x x 3 5 Absolute Indirect

JMP (addr,X) 7C x x 3 6 Absolute Indexed Indirect

JMP long 5C x 4 4 Absolute Long

JMP [addr] DC x 3 6 Absolute Indirect Long

Notes:
1. Add 1 cycle if 65C02
2. 6502: If low byte of address is 0xFF yields incorrect result
3. Add 1 more cycle if branch taken crosses page boundary on a 6502, 65C02 or a 65816 in 6502 emulation mode (e=1)

3

1, 2

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 23 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.3.6 - Subroutines
Calling subroutines
The JSR & RTS instructions allows for subroutines to be implemented.
The work by utilising 2 bytes on the stack consisting of the
address before the next instruction to execute when the
subroutine returns - not the actual address of that instruction.

On the 16-bit 65816 there are the JSL & RTL instructions.
These use 3 bytes on the stack. The extra byte is the return bank address.
Like RTS the address on the stack is the address before the next instruction not the actual instruction

For Interrupt routines there's the RTI instruction. That instruction is on the Interrupt page.

JSR - Jump to Subroutine
Transfer control to a subroutine, pushing the return address onto the stack.
The 16-bit address placed on the stack is the address
of the 3rd byte of the instruction, not the address of the
next instruction.

Subroutines called by JSR must return using the RTS instruction.

Some assemblers recognise JSR as an alternate to the 65816 JSL instruction where if the address is greater than
&FFFF
then the 24
bit JSL instruction is used instead.

RTS - Return from Subroutine
Returns from a subroutine called by JSR.
It pulls the 16-bit program counter from the stack, incrementing it by one so that the next
instruction is the one
immediately after the calling JSR instruction.

JSL - Jump to Subroutine Long
Transfer control to a subroutine, pushing the return address onto the stack.
The 24-bit address placed on the stack is the address
of the 4th byte of the instruction, not the address of the
next instruction.

Subroutines called by JSL must return using the RTL instruction.

RTL - Return from Subroutine Long
Returns from a subroutine called by JSL.
It pulls the 24-bit program counter from the stack, incrementing it by one so that the next
instruction is the one
immediately after the calling JSL instruction.

Flags Affected

None.

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

JSL long 22 x 4 8 Absolute Long

JSR addr 20 x x x 3 6 Absolute

JSR (addr,X) FC x 3 8 Absolute Indexed Indirect

RTL 6B x 1 6 Implied

RTS 60 x x x 1 6 Implied

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 24 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.4 - Registers
Register operations

1.4.1 - LDA
Load Accumulator from Memory
Load the accumulator with data from memory.

On all processors, the data loaded from memory is 8-bit.
However, for 16-bit processors with the m flag is clear then the data
added is 16-bit
with the low-order 8-bits at the effective address and the high-order 8-bits at the effective address plus one.

Flags Affected

Flags n - - - - - z -

n Set if most-significant bit of result is set
z Set if result is zero

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

LDA #const A9 x x x 2 2 Immediate

LDA addr AD x x x 3 4 Absolute

LDA long AF x 4 5 Absolute Long

LDA dp A5 x x x 2 3 Direct Page

LDA (dp) B2 x x 2 5 Direct Page Indirect

LDA [dp] A7 x 2 6 Direct Page Indirect Long

LDA addr,X BD x x x 3 4 Absolute Indexed X

LDA long,X BF x 4 5 Absolute Long Indexed X

LDA addr,Y B9 x x x 3 4 Absolute Indexed Y

LDA dp,X B5 x x x 2 4 Direct Page Indexed X

LDA (dp,X) A1 x x x 2 6 Direct Page Indexed Indirect X

LDA (dp),Y B1 x x x 2 5 Direct Page Indirect Indexed Y

LDA [dp],Y B7 x 2 6 Direct Page Indirect Long Indexed Y

LDA sr,S A3 x 2 4 Stack Relative

LDA (sr,S),Y B3 x 2 7 Stack Relative Indirect Indexed Y

Notes:
1. 65816: Add 1 byte if m=0 (16-bit memory/accumulator)
2. 65816: Add 1 cycle if m=0 (16-bit memory/accumulator)
3. 65816: Add 1 cycle if low byte of Direct Page register is not 0
4. Add 1 cycle if adding index crosses a page boundary

1 2

2

2

2, 3

2, 3

2, 3

2, 4

2

2, 4

2, 3

2, 3

2, 3, 4

2, 3

2

2

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 25 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.4.2 - LDX
Load Index Register X from Memory
Load index register X with data from memory.

On all processors, the data loaded from memory is 8-bit.
However, for 16-bit processors with the m flag is clear then the data
added is 16-bit
with the low-order 8-bits at the effective address and the high-order 8-bits at the effective address plus one.

Flags Affected

Flags n - - - - - z -

n Set if most-significant bit of result is set
z Set if result is zero

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

LDX #const A2 x x x 2 2 Immediate

LDX addr AE x x x 3 4 Absolute

LDX dp A6 x x x 2 3 Direct Page

LDX addr,X BE x x x 3 4 Absolute Indexed X

LDX dp,X B6 x x x 2 4 Direct Page Indexed X

Notes:
1. 65816: Add 1 byte if m=0 (16-bit memory/accumulator)
2. 65816: Add 1 cycle if m=0 (16-bit memory/accumulator)
3. 65816: Add 1 cycle if low byte of Direct Page register is not 0
4. Add 1 cycle if adding index crosses a page boundary

1 2

2

2, 3

2, 4

2, 3

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 26 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.4.3 - LDY
Load Index Register Y from Memory
Load index register Y with data from memory.

On all processors, the data loaded from memory is 8-bit.
However, for 16-bit processors with the m flag is clear then the data
added is 16-bit
with the low-order 8-bits at the effective address and the high-order 8-bits at the effective address plus one.

Flags Affected

Flags n - - - - - z -

n Set if most-significant bit of result is set
z Set if result is zero

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

LDY #const A0 x x x 2 2 Immediate

LDY addr AC x x x 3 4 Absolute

LDY dp A4 x x x 2 3 Direct Page

LDY addr,X BC x x x 3 4 Absolute Indexed X

LDY dp,X B4 x x x 2 4 Direct Page Indexed X

Notes:
1. 65816: Add 1 byte if m=0 (16-bit memory/accumulator)
2. 65816: Add 1 cycle if m=0 (16-bit memory/accumulator)
3. 65816: Add 1 cycle if low byte of Direct Page register is not 0
4. Add 1 cycle if adding index crosses a page boundary

1 2

2

2, 3

2, 4

2, 3

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 27 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.4.4 - STA
Store Accumulator to Memory
Stores the accumulator into memory.

On all processors, the data written to memory is 8-bit.
However, for 16-bit processors with the m flag is clear then the data written
is 16-bit
with the low-order 8-bits at the effective address and the high-order 8-bits at the effective address plus one.

Flags Affected

None.

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

STA addr 8D x x x 3 4 Absolute

STA long 8F x 4 5 Absolute Long

STA dp 85 x x x 2 3 Direct Page

STA (dp) 92 x x 2 5 Direct Page Indirect

STA [dp] 87 x 2 6 Direct Page Indirect Long

STA addr,X 9D x x x 3 4 Absolute Indexed X

STA long,X 9F x 4 5 Absolute Long Indexed X

STA addr,Y 99 x x x 3 4 Absolute Indexed Y

STA dp,X 95 x x x 2 4 Direct Page Indexed X

STA (dp,X) 81 x x x 2 6 Direct Page Indexed Indirect X

STA (dp),Y 91 x x x 2 5 Direct Page Indirect Indexed Y

STA [dp],Y 97 x 2 6 Direct Page Indirect Long Indexed Y

STA sr,S 83 x 2 4 Stack Relative

STA (sr,S),Y 93 x 2 7 Stack Relative Indirect Indexed Y

Notes:
1. 65816: Add 1 cycle if m=0 (16-bit memory/accumulator)
2. 65816: Add 1 cycle if low byte of Direct Page register is not 0

1

1

1, 2

1, 2

1, 2

1

1

1

1, 2

1, 2

1, 2

1, 2

1

1

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 28 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.4.5 - STX
Store Index Register X to Memory
Stores the index register X into memory.

On all processors, the data written to memory is 8-bit.
However, for 16-bit processors with the m flag is clear then the data written
is 16-bit
with the low-order 8-bits at the effective address and the high-order 8-bits at the effective address plus one.

Flags Affected

None.

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

STX addr 8E x x x 3 4 Absolute

STX dp 86 x x x 2 3 Direct Page

STX dp,Y 96 x x x 2 4 Direct Page Indexed Y

Notes:
1. 65816: Add 1 cycle if m=0 (16-bit memory/accumulator)
2. 65816: Add 1 cycle if low byte of Direct Page register is not 0

1

1, 2

1, 2

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 29 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.4.6 - STY
Store Index Register X to Memory
Stores the index register Y into memory.

On all processors, the data written to memory is 8-bit.
However, for 16-bit processors with the m flag is clear then the data written
is 16-bit
with the low-order 8-bits at the effective address and the high-order 8-bits at the effective address plus one.

Flags Affected

None.

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

STY addr 8C x x x 3 4 Absolute

STY dp 84 x x x 2 3 Direct Page

STY dp,X 94 x x x 2 4 Direct Page Indexed X

Notes:
1. 65816: Add 1 cycle if m=0 (16-bit memory/accumulator)
2. 65816: Add 1 cycle if low byte of Direct Page register is not 0

1

1, 2

1, 2

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 30 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.4.7 - STZ
Store Zero to Memory
Stores zero to memory.

On all processors, the data written to memory is 8-bit.
However, for 16-bit processors with the m flag is clear then the data written
is 16-bit
with the low-order 8-bits at the effective address and the high-order 8-bits at the effective address plus one.

Flags Affected

None.

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

STZ addr 9C x x 3 4 Absolute

STZ dp 64 x x 2 3 Direct Page

STZ addr,X 9E x x 3 5 Absolute Indexed X

STZ dp,X 74 x x 2 4 Direct Page Indexed X

Notes:
1. 65816: Add 1 cycle if m=0 (16-bit memory/accumulator)
2. 65816: Add 1 cycle if low byte of Direct Page register is not 0

1

1, 2

1

1, 2

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 31 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.4.8 - Transfer
Transfer data between registers
The transfer register set of instructions allows for data to be passed between different registers.

In all of these transfer instructions, the source register is unchanged.

For example, on the 6502 to save the X register on the stack you would need to use the following:

1 TXA ; Transfer X into A

2 PHA ; Push A to the stack

Note: On the 65C02 and later this is replaced by the PHX instruction which doesn't touch the accumulator.

TAX - Transfer Accumulator to Index Register X
Transfers the Accumulator to X.
On the 8-bit processors the registers are all the same size, however on the 16-bit processors the
registers can
be
of different sizes. The following table describes how the data is transferred when a size mismatch occurs:

Source SizeDest Sizem x Action performed
8 8 All types Value transferred is 8-bit

8 16 1 0
Value transferred is 16-bit.
The 8-bit A becomes the low byte of the index register.
The 8-bit hidden B register becomes the high byte of the index register.

16 8 0 1 The low byte of A is transferred to the index register
16 16 0 0 The full 16-bit A is transferred to the index register

TAY - Transfer Accumulator to Index Register Y
Transfers the Accumulator to Y. It follows the same rules as TAX.

TCD - Transfer 16-bit accumulator to Direct Page Register
TCD transfers the 16-bit accumulator C to the direct page register D, regardless of the accumulator/memory flag.

The C accumulator is used to indicate that 16-bits are transferred regardless of the m flag.
If the A accumulator is 8-bit due to m=1
or in 6502 emulation mode then C = A as the low 8-bits and the hidden B
accumulator as the high 8-bits.

TCS - Transfer Accumulator to Stack Pointer
TCS transfers the 16-bit accumulator C to the stack pointer S, regardless of the accumulator/memory flag.
The C register is defined
above for TCD.
An alternate mnemonic for TCS is TAS.

Note: Unlike most transfer instructions, TCS does not affect any flags.

TDC - Transfer Direct Page Register tp 16-bit Accumulator
TDC transfers the Direct Page Register to the 16-bit accumulator C.
The C register is defined above for TCD.
An alternate mnemonic
for TDC is TDA.

TSC - Transfer Stack Pointer to Accumulator
TSC transfers the stack pointer S to the 16-bit accumulator C, regardless of the accumulator/memory flag.
The C register is defined
above for TCD.
An alternate mnemonic for TCS is TSA.

TSX - Transfer Stack Pointer to Index Register X
TSX transfers the stack pointer to X.
The stack pointer is unchanged.
On 8-bit processors only the low byte is transferred to X.
On
16-bit processors (x=0) the full 16-bit value is tranferred to X.

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 32 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

TXA - Transfer Index Register X to Accumulator
TXA transfers X into the accumulator.
On the 8-bit processors the registers are all the same size, however on the 16-bit processors
the registers can
be
of different sizes. The following table describes how the data is transferred when a size mismatch occurs:

Source SizeDest Sizem x Action performed
8 8 All types Value transferred is 8-bit

8 16 1 0
Value transferred is 16-bit.
The 8-bit index register becomes the low byte of the accumulator.
The high-byte of the accumulator is set to 0.

16 8 0 1
Value transferred is 8-bit.
The low 8-bits of the index register becomes the low byte of the accumulator.
The high-byte of the hidden accumulator B is not affected by the transfer.

16 16 0 0 The full 16-bit index register is transferred to the accumulator

TXS - Transfer Index Register X to the Stack Pointer
TXS transfers X to the stack pointer to.
The X is unchanged.
On 8-bit processors only the low byte is transferred to S.
On 16-bit
processors (x=1) the low 8-bits of X is transferred to S. The high 8-bits of S are zeroed.
On 16-bit processors (x=0) the full 16-bit value
of X is transferred to S.

Note: Unlike most transfer instructions, TXS does not affect any flags.

TXY - Transfer index register X to Y
TXY transfers X to Y.
X is unchanged.
The registers are always the same size, so when 8-bit then that's what's transferred.
When 16-
bit (x=0) then 16-bits are transferred.

TYA - Transfer Index Register Y to Accumulator
TYA transfers Y into the accumulator.
It follows the same rules as TXA above.

TYX - Transfer index register Y to X
TYX transfers Y to X.
Y is unchanged.
The registers are always the same size, so when 8-bit then that's what's transferred.
When 16-
bit (x=0) then 16-bits are transferred.

XBA - Exchange the B & A accumulators
On the 16-bit processors the 16-bit C accumulator is formed of two 8-bit accumulators,
A for the low 8-bits and B for the upper 8-
bits.
XBA swaps the contents of the A & B registers.

In 8-bit memory mode, B is usually referred to as the hidden B accumulator, so the XBA instruction
can be used to swap the
accessible A with B, providing an in-processor scratch accumulator rather than pushing a
value to the stack.

The flags are based on the value of the 8-bit A accumulator

Flags Affected

Flags n - - - - - z -

n Set if most significant bit of the transferred value is set
z Set if value transferred is zero

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 33 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

Instructions

Src Dest Syntax

Opcode Available on: # of # of Addressing
Mode Notes(hex) 6502 65C02 65816 bytes cycles

A X TAX AA x x x 1 2 Implied

A Y TAY A8 x x x 1 2 Implied

C D TCD 5B x 1 2 Implied

C S TCS 1B x 1 2 Implied Flags are unaffected

D C TDC 7B x 1 2 Implied

S C TSC 3B x 1 2 Implied

S X TSX BA x x x 1 2 Implied

X A TXA 8A x x x 1 2 Implied

X S TXS 9A x x x 1 2 Implied Flags are unaffected

X Y TXY 9B x 1 2 Implied

Y A TYA 98 x x x 1 2 Implied

Y X TYX BB x 1 2 Implied

B A XBA EB x 1 2 Implied Exchanges both registers, flags based on A post
exchange

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 34 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.5 - Stack
Stack operations

1.5.1 - Pull
Stack pull operations
Flags Affected

Flags n - - - - - z -

n Set if most significant bit of the transferred value is set
z Set if value transferred is zero

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

PLA 68 x x x 1 3 Implied

PLB AB x 1 4 Implied

PLD 2B x 1 5 Implied

PLP 28 x x x 1 4 Implied

PLX FA x x x 1 4 Implied

PLY 7A x x x 1 4 Implied

Notes:
1. Add 1 cycle if low byte of Direct Page register is other than zero (DL<>0)
2. 65816: Add 1 cycle if m=0 (16-bit memory/accumulator)
3. 65816: Add 1 cycle if x=0 (16-bit registers)

2

3

3

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 35 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.5.2 - Push
Stack push operations
Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

PEA addr F4 x 3 5 Stack Absolute

PEI (dp) D4 x 2 6 Stack Direct Page Indirect

PER label 62 x 3 6 Stack PC Relative Long

PHA 48 x x x 1 3 Implied

PHB 8B x 1 3 Implied

PHD 0B x 1 4 Implied

PHK 4B x 1 3 Implied

PHP 08 x x x 1 3 Implied

PHX DA x x x 1 3 Implied

PHY 5A x x x 1 3 Implied

Notes:
1. Add 1 cycle if low byte of Direct Page register is other than zero (DL<>0)
2. 65816: Add 1 cycle if m=0 (16-bit memory/accumulator)
3. 65816: Add 1 cycle if x=0 (16-bit registers)

1

2

3

3

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 36 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.6 - Interrupts
Software & Hardware Interrupts

1.6.1 - BRK - Software Break
Perform a software break
BRK forces a software interrupt. It is unaffected by the i interrupt disable flag.

The BRK instruction is a single byte instruction. However, when it is invoked the Program Counter is incremented by 2.
This allows
for a one-byte signature value indicating which break caused the interrupt.

Even if the signature byte is not required, it must either be there or the RTI instruction which returns control
to the caller must
manually decrement the return address.
As this can be tricky, most operating systems require BRK to take up 2 bytes in memory.

6502, 65C02 & Emulation Mode (e=1)
The program counter is incremented by two & pushed onto the stack.
The status register (with b break flag set) is pushed onto the
stack.
The interrupt disable flag is then set, disabling interrupts.
The program counter is loaded with the interrupt vector at &FFFE-
&FFFF.

It's up to the interrupt handler pointed to by (&FFFE) to test the b flag to determine if the interrupt was from
a software (BRK)
rather than a hardware (IRQ) interrupt.

 1 .handler PLA ; copy status from stack

 2 PHA ; but don't remove it else RTI will break

 3

 4 AND #&10 ; check B flag

 5 BNE isBrk ; call break handler

 6

 7 .isIRQ ; hardware handler here

 8 RTI ; exit hardware handler

 9

10 .isBrk ; break handler here

11 RTI ; exit BRK handler

65802/65816 Native Mode (e=0)
The program bank register is pushed onto the stack.
The program counter is incremented by two & pushed onto the stack.
The
status register is pushed onto the stack.
The interrupt disable flag is then set, disabling interrupts.
The program counter is loaded
with the break vector at &00FFE6-&00FFE7.

Decimal Mode
On the 6502 the decimal d flag is not modified after a BRK is executed.
On the 65C02 & 65816 the decimal d flag is reset to 0.

Flags Affected

Flags - - - b d i - -

b Value of P register on the stack is set
d On 65C02, 65816 in emulation mode (e=1) reset to 0 for binary arithmetic, unchanged on 6502
i set to disable hardware IRQ interrupts

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

BRK 00 x x x 2 7 Stack Interrupt

Notes:
1. BRK is 1 byte but program counter is incremented by 2 allowing for an optional parameter
2. 65816: Add 1 cycle in 6502 emulation mode (e=1)

1 2

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 37 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.6.1.1 - BRK on the BBC Micro & Acorn Electron
Example of BRK on the BBC Micro or Acorn Electron
In the operating system for the BBC Micro (& Acorn Electron), the standard is to write BRK followed by an error number,
then the
error message ending with a 0

1 BRK ; Software break

2 EQUB 0 ; Error code

3 EQUS "Silly" ; This is a real error message in BBC BASIC, try: AUTO10,1000

4 EQUB 0 ; End of message marker

Service ROM's usually write error messages into RAM starting at &0100 and then do a JMP &0100 to run it.
They do that as the
handler is usually in a Language rom so they would be paged out if they ran BRK from their own ROM.

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 38 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.6.2 - COP - Co-Processor Enable
Perform a software interrupt with optional co-processor
COP causes a software interrupt similar to BRK but through a separate vector.
Unlike BRK, it is possible for it to be trapped by an
optional co-processor like a floating point processor or a
graphics processor.
It is unaffected by the i interrupt disable flag.

Like BRK, COP increments the Program Counter by 2. However assemblers require the second byte to be provided as part
of the
instruction.

Values &00-&7F are free for use by software handlers.

Values &80-&FF are reserved for hardware implementations.

65802/65816 in 6502 emulation mode (e=1)
The program counter is incremented by two & pushed onto the stack.
The status register is pushed onto the stack.
The interrupt
disable flag is then set, disabling interrupts.
The program counter is loaded with the interrupt vector at &FFF4-&FFF5.
The d flag is
reset to 0 after the instruction is executed.

65802/65816 in native mode (e=0)
The program bank register is pushed onto the stack.
The program counter is incremented by two & pushed onto the stack.
The
status register is pushed onto the stack.
The interrupt disable flag is then set, disabling interrupts.
The program bank register is set
to 0.
The program counter is loaded with the break vector at &00FFE4-&00FFE5.
The d flag is reset to 0 after the instruction is
executed.

Flags Affected

Flags - - - - d i - -

d reset to 0
i set to disable hardware IRQ interrupts

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

COP const 02 x 2 7 Stack Interrupt

Notes:
1. 65816: Add 1 cycle in 65816 native mode (e=0)

1

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 39 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.6.3 - RTI
Return from Interrupt
The RTI instruction is used at the end of an interrupt handler.
It pulls both the status register and program counter from the stack.
For 16bit processors running in native mode it also pulls the program bank register from the stack.

Unlike RTS, the address on the stack is the actual return address.
(RTS expects it to be the address before the next instruction).

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

RTI 40 x x x 1 6 Implied

Notes:
1. 65816: Add 1 cycle in 65816 native mode (e=0)

1

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 40 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.6.4 - WAI - Wait for Interrupt
Put the processor to sleep until a hardware interrupt occurs
WAI pulls the RDY pin low.
Power consumption reduced to a minimum and RDY is kept low until an external hardware interrupt
(NMI, IRQ, ABORT or RESET) is received.

When an interrupt is received
Interrupts enabled i=0
When a hardware interrupt is received, control is vectored though one of the hardware interrupt vectors.
An RTI instruction in the
invoked handler will return control back to the instruction immediately after the WAI.

Interrupts disabled i=1
If interrupts were disabled at the time WAI was invoked then when the interrupt is received then the
relevant interrupt handler is
not called and execution resumes immediately with the instruction after the WAI.
This allows for processing to be synchronized
with the interrupt.

The data bus
As WAI pulls RDY low it frees up the bus.
If BE is also pulled low, the processor can be disconnected from the bus.

Flags Affected

None.

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

WAI CB x 1 3 Implied

Notes:
1. Uses 3 cycles to shut down the processor. Additional cycles required by interrupt to restart it

1

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 41 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.7 - Miscellaneous Instructions
Miscellaneous Instructions

1.7.1 - Block Move
Move (copy) memory block
The MVN & MVP instructions moves/copies a block of memory from one location to another.

The source, destination and length of the block are taken from the X, Y & C registers.

The source address is in X, the destination address is in Y.

The length of the block minus 1 is in the C double accumulator.
So if you are moving 42 bytes then C should have 41.

The two bytes of the operand consists of the source bank in the first byte and the destination bank in the second.

Processor modes
These instructions should be run in 16-bit native mode.
If the index registers are in 8-bit mode (x=1) or the processor is in 6502
emulation mode (e=1) then the blocks specified
will be in zero page due to the high byte of the index registers will be 0.

Interrupts
If a block move instruction is interrupted, it may be resumed automatically when RTI is executed by the handler,
as long as the
registers are left intact.
The address pushed to the stack when it is interrupted is the address of the block move instruction so it
resumes where it left off.
The byte currently being moved will complete first before the interrupt is serviced.

MVN
MVN copies a block from the start of the source block to the start of the destination block.

The source and destination addresses need to point to the first byte of each block to be moved.

When execution is complete, the C accumulator will be &FFFF
X & Y will point to the byte after the end of the source & destination
blocks respectively.

MVP - Block Move Previous
MVP copies a block from the end of the source block to the end of the destination block.

The source and destination addresses need to point to the last byte of each block to be moved.

When execution is complete, the C accumulator will be &FFFF
X & Y will point to the byte before the start of the source & destination
blocks respectively.

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

MVN srcbk, dstbk 54 x 3 * Block Move

MVP srcbk, dstbk 44 x 3 * Block Move

Notes:
1. 7 cycles per byte moved

1

1

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 42 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.7.2 - XCE
Exchange Carry & Emulation Bits
This instruction is the only means to shift a 65802 or 65812 processor between 6502 emulation mode and full 16-bit native mode.

Switch to native 16-bit mode
To switch into native mode, clear the carry bit then invoke XCE

1 .goNative

2 CLC ; Clear Carry to indicate native mode

3 XCE ; Processor will be in 16-bit native mode once this completes

4 RTS ; Carry will now set if we were originally in emulation or clear if already native.

Once XCE has completed and the processor is in native mode, the following would have occurred.

bit 5 of the flags stops being the b break flag. It's now the x mode select flag
bit 6 is now the m memory mode flag (it's unused in 6502 emulation mode)
Both x & m are set to 1

Switch to 6502 emulation mode
To switch into 6502 emulation mode, set the carry bit then invoke XCE

1 .goEmulation

2 SEC ; Set Carry to indicate native mode

3 XCE ; Processor will be in 16-bit native mode once this completes

4 RTS ; Carry will now set if we were already in emulation or clear if we were originally native.

Once XCE has completed and the processor is in 6502 emulation mode, the following would have occurred.

The x & m flags are lost from the status register.
bit 6 is unavailable as it's unused in 6502 emulation mode
The accumulator is forced into 8-bit's, the high 8 bits are in the hidden B accumulator
The index registers are forced into 8-bits. The high 8-bits are lost.
The stack pointer is forced into page 1, losing the high byte of the address.

Flags Affected

Flags - - m - - - - c

m Set to 1 when switching to native mode, otherwise clear
c Takes emulations previous value

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

XCE FB x 1 2 Implied

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 43 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.7.3 - NOP
No Operation
A NOP takes no action and does not effect any registers except the program counter.

NOP's are usually used for timing loops as each NOP takes 2 cycles.

Flags Affected

None.

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

NOP EA x x x 1 2 Implied

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 44 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.7.4 - Reserved
WDM Reserved for future expansion

Do not use this instruction. It will break if/when a future processor is released with additional instructions.

The 65802 & 654816 processors use 255 out of the possible 256 8-bit opcodes.
The remaining opcode is this one, labeled WDM
which happens to be the initials of William D. Mensch who designed the processors.

To allow additional instructions to be added later this instruction act's as a prefix allowing an additonal 256 opcodes.
This is a
similar technique to the Z80 & 8080 processors which have 2-byte extension opcodes.

The actual number of bytes and cycles involved will be depended on those extensions, however the byte size will be
a minimum of 2
bytes.

On the 65802 & 65816 this instruction will execute as a 2-byte NOP.

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

WDM 42 x 2 ? Implied

Notes:
1. byte & cycle count subject to change in future processors

1 1

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 45 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

1.7.5 - STP - Stop Processor
Stop the Processor until Reset
STP will stop the processors oscillator input, shutting down the processor until a reset occurs
by pulling the RES pin low.

As power consumption is a function of frequency in CMOS circuits, stopping the clock cuts power to almost nothing.

Flags Affected

None.

Instructions

Syntax

Opcode Available on: # of # of

Addressing Mode(hex) 6502 65C02 65816 bytes cycles

STP DB x 1 3 Implied

Notes:
1. Uses 3 cycles to shut down the processor. Additional cycles required by reset to restart it

1

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 46 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

2 - reference
2.1 - Instruction List by name
ADC addr 6Dnnnn
ADC addr,X 7Dnnnn
ADC addr,Y 79nnnn
ADC long 6Fnnnnnn
ADC long,X 7Fnnnnnn
ADC dp 65nn
ADC (dp) 72nn
ADC (dp,X) 61nn
ADC (dp),Y 71nn
ADC [dp] 67nn
ADC [dp],Y 77nn
ADC dp,X 75nn
ADC #const 69nn
ADC sr,S 63nn
ADC (sr,S),Y 73nn
AND addr 2Dnnnn
AND addr,X 3Dnnnn
AND addr,Y 39nnnn
AND long 2Fnnnnnn
AND long,X 3Fnnnnnn
AND dp 25nn
AND (dp) 32nn
AND (dp,X) 21nn
AND (dp),Y 31nn
AND [dp] 27nn
AND [dp],Y 37nn
AND dp,X 35nn
AND #const 29nn
AND sr,S 23nn
AND (sr,S),Y 33nn
ASL addr 0Ennnn
ASL addr,X 1Ennnn
ASL A 0A
ASL dp 06nn
ASL dp,X 16nn
BCC nearlabel 90nn
BCS nearlabel B0nn
BEQ nearlabel F0nn
BIT addr 2Cnnnn
BIT addr,X 3Cnnnn
BIT dp 24nn
BIT dp,X 34nn
BIT #const 89nn
BMI nearlabel 30nn
BNE nearlabel D0nn
BPL nearlabel 10nn
BRA nearlabel 80nn
BRK 00nn
BRL label 82nnnn
BVC nearlabel 50nn
BVS nearlabel 70nn
CLC 18
CLD D8
CLI 58
CLV B8
CMP addr CDnnnn
CMP addr,X DDnnnn

CMP addr,Y D9nnnn
CMP long CFnnnnnn
CMP long,X DFnnnnnn
CMP dp C5nn
CMP (dp) D2nn
CMP (dp,X) C1nn
CMP (dp),Y D1nn
CMP [dp] C7nn
CMP [dp],Y D7nn
CMP dp,X D5nn
CMP #const C9nn
CMP sr,S C3nn
CMP (sr,S),Y D3nn
COP const 02nn
CPX addr ECnnnn
CPX dp E4nn
CPX #const E0nn
CPY addr CCnnnn
CPY dp C4nn
CPY #const C0nn
DEC addr CEnnnn
DEC addr,X DEnnnn
DEC A 3A
DEC dp C6nn
DEC dp,X D6nn
DEX CA
DEY 88
EOR addr 4Dnnnn
EOR addr,X 5Dnnnn
EOR addr,Y 59nnnn
EOR long 4Fnnnnnn
EOR long,X 5Fnnnnnn
EOR dp 45nn
EOR (dp) 52nn
EOR (dp,X) 41nn
EOR (dp),Y 51nn
EOR [dp] 47nn
EOR [dp],Y 57nn
EOR dp,X 55nn
EOR #const 49nn
EOR sr,S 43nn
EOR (sr,S),Y 53nn
INC addr EEnnnn
INC addr,X FEnnnn
INC A 1A
INC dp E6nn
INC dp,X F6nn
INX E8
INY C8
JMP addr 4Cnnnn
JMP (addr) 6Cnnnn
JMP (addr,X) 7Cnnnn
JMP [addr] DCnnnn
JMP long 5Cnnnnnn
JSL long 22nnnnnn
JSR addr 20nnnn
JSR (addr,X) FCnnnn

LDA addr ADnnnn
LDA addr,X BDnnnn
LDA addr,Y B9nnnn
LDA long AFnnnnnn
LDA long,X BFnnnnnn
LDA dp A5nn
LDA (dp) B2nn
LDA (dp,X) A1nn
LDA (dp),Y B1nn
LDA [dp] A7nn
LDA [dp],Y B7nn
LDA dp,X B5nn
LDA #const A9nn
LDA sr,S A3nn
LDA (sr,S),Y B3nn
LDX addr AEnnnn
LDX addr,X BEnnnn
LDX dp A6nn
LDX dp,X B6nn
LDX #const A2nn
LDY addr ACnnnn
LDY addr,X BCnnnn
LDY dp A4nn
LDY dp,X B4nn
LDY #const A0nn
LSR addr 4Ennnn
LSR addr,X 5Ennnn
LSR A 4A
LSR dp 46nn
LSR dp,X 56nn
MVN srcbk, dstbk 54nnnn
MVP srcbk, dstbk 44nnnn
NOP EA
ORA addr 0Dnnnn
ORA addr,X 1Dnnnn
ORA addr,Y 19nnnn
ORA long 0Fnnnnnn
ORA long,X 1Fnnnnnn
ORA dp 05nn
ORA (dp) 12nn
ORA (dp,X) 01nn
ORA (dp),Y 11nn
ORA [dp] 07nn
ORA [dp],Y 17nn
ORA dp,X 15nn
ORA #const 09nn
ORA sr,S 03nn
ORA (sr,S),Y 13nn
PEA addr F4nnnn
PEI (dp) D4nn
PER label 62nnnn
PHA 48
PHB 8B
PHD 0B
PHK 4B
PHP 08
PHX DA

PHY 5A
PLA 68
PLB AB
PLD 2B
PLP 28
PLX FA
PLY 7A
REP #const C2nn
ROL addr 2Ennnn
ROL addr,X 3Ennnn
ROL A 2A
ROL dp 26nn
ROL dp,X 36nn
ROR addr 6Ennnn
ROR addr,X 7Ennnn
ROR A 6A
ROR dp 66nn
ROR dp,X 76nn
RTI 40
RTL 6B
RTS 60
SBC addr EDnnnn
SBC addr,X FDnnnn
SBC addr,Y F9nnnn
SBC long EFnnnnnn
SBC long,X FFnnnnnn
SBC dp E5nn
SBC (dp) F2nn
SBC (dp,X) E1nn
SBC (dp),Y F1nn
SBC [dp] E7nn
SBC [dp],Y F7nn
SBC dp,X F5nn
SBC #const E9nn
SBC sr,S E3nn
SBC (sr,S),Y F3nn
SEC 38
SED F8
SEI 78
SEP #const E2nn
STA addr 8Dnnnn
STA addr,X 9Dnnnn
STA addr,Y 99nnnn
STA long 8Fnnnnnn
STA long,X 9Fnnnnnn
STA dp 85nn
STA (dp) 92nn
STA (dp,X) 81nn
STA (dp),Y 91nn
STA [dp] 87nn
STA [dp],Y 97nn
STA dp,X 95nn
STA sr,S 83nn
STA (sr,S),Y 93nn
STP DB
STX addr 8Ennnn
STX dp 86nn

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 47 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

STX dp,Y 96nn
STY addr 8Cnnnn
STY dp 84nn
STY dp,X 94nn
STZ addr 9Cnnnn
STZ addr,X 9Ennnn
STZ dp 64nn

STZ dp,X 74nn
TAX AA
TAY A8
TCD 5B
TCS 1B
TDC 7B
TRB addr 1Cnnnn

TRB dp 14nn
TSB addr 0Cnnnn
TSB dp 04nn
TSC 3B
TSX BA
TXA 8A
TXS 9A

TXY 9B
TYA 98
TYX BB
WAI CB
WDM 42nn
XBA EB
XCE FB

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 48 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

2.2 - Instruction List by opcode
BRK 00nn
ORA (dp,X) 01nn
COP const 02nn
ORA sr,S 03nn
TSB dp 04nn
ORA dp 05nn
ASL dp 06nn
ORA [dp] 07nn
PHP 08
ORA #const 09nn
ASL A 0A
PHD 0B
TSB addr 0Cnnnn
ORA addr 0Dnnnn
ASL addr 0Ennnn
ORA long 0Fnnnnnn
BPL nearlabel 10nn
ORA (dp),Y 11nn
ORA (dp) 12nn
ORA (sr,S),Y 13nn
TRB dp 14nn
ORA dp,X 15nn
ASL dp,X 16nn
ORA [dp],Y 17nn
CLC 18
ORA addr,Y 19nnnn
INC A 1A
TCS 1B
TRB addr 1Cnnnn
ORA addr,X 1Dnnnn
ASL addr,X 1Ennnn
ORA long,X 1Fnnnnnn
JSR addr 20nnnn
AND (dp,X) 21nn
JSL long 22nnnnnn
AND sr,S 23nn
BIT dp 24nn
AND dp 25nn
ROL dp 26nn
AND [dp] 27nn
PLP 28
AND #const 29nn
ROL A 2A
PLD 2B
BIT addr 2Cnnnn
AND addr 2Dnnnn
ROL addr 2Ennnn
AND long 2Fnnnnnn
BMI nearlabel 30nn
AND (dp),Y 31nn
AND (dp) 32nn
AND (sr,S),Y 33nn
BIT dp,X 34nn
AND dp,X 35nn
ROL dp,X 36nn
AND [dp],Y 37nn
SEC 38
AND addr,Y 39nnnn
DEC A 3A

TSC 3B
BIT addr,X 3Cnnnn
AND addr,X 3Dnnnn
ROL addr,X 3Ennnn
AND long,X 3Fnnnnnn
RTI 40
EOR (dp,X) 41nn
WDM 42nn
EOR sr,S 43nn
MVP srcbk, dstbk 44nnnn
EOR dp 45nn
LSR dp 46nn
EOR [dp] 47nn
PHA 48
EOR #const 49nn
LSR A 4A
PHK 4B
JMP addr 4Cnnnn
EOR addr 4Dnnnn
LSR addr 4Ennnn
EOR long 4Fnnnnnn
BVC nearlabel 50nn
EOR (dp),Y 51nn
EOR (dp) 52nn
EOR (sr,S),Y 53nn
MVN srcbk, dstbk 54nnnn
EOR dp,X 55nn
LSR dp,X 56nn
EOR [dp],Y 57nn
CLI 58
EOR addr,Y 59nnnn
PHY 5A
TCD 5B
JMP long 5Cnnnnnn
EOR addr,X 5Dnnnn
LSR addr,X 5Ennnn
EOR long,X 5Fnnnnnn
RTS 60
ADC (dp,X) 61nn
PER label 62nnnn
ADC sr,S 63nn
STZ dp 64nn
ADC dp 65nn
ROR dp 66nn
ADC [dp] 67nn
PLA 68
ADC #const 69nn
ROR A 6A
RTL 6B
JMP (addr) 6Cnnnn
ADC addr 6Dnnnn
ROR addr 6Ennnn
ADC long 6Fnnnnnn
BVS nearlabel 70nn
ADC (dp),Y 71nn
ADC (dp) 72nn
ADC (sr,S),Y 73nn
STZ dp,X 74nn
ADC dp,X 75nn

ROR dp,X 76nn
ADC [dp],Y 77nn
SEI 78
ADC addr,Y 79nnnn
PLY 7A
TDC 7B
JMP (addr,X) 7Cnnnn
ADC addr,X 7Dnnnn
ROR addr,X 7Ennnn
ADC long,X 7Fnnnnnn
BRA nearlabel 80nn
STA (dp,X) 81nn
BRL label 82nnnn
STA sr,S 83nn
STY dp 84nn
STA dp 85nn
STX dp 86nn
STA [dp] 87nn
DEY 88
BIT #const 89nn
TXA 8A
PHB 8B
STY addr 8Cnnnn
STA addr 8Dnnnn
STX addr 8Ennnn
STA long 8Fnnnnnn
BCC nearlabel 90nn
STA (dp),Y 91nn
STA (dp) 92nn
STA (sr,S),Y 93nn
STY dp,X 94nn
STA dp,X 95nn
STX dp,Y 96nn
STA [dp],Y 97nn
TYA 98
STA addr,Y 99nnnn
TXS 9A
TXY 9B
STZ addr 9Cnnnn
STA addr,X 9Dnnnn
STZ addr,X 9Ennnn
STA long,X 9Fnnnnnn
LDY #const A0nn
LDA (dp,X) A1nn
LDX #const A2nn
LDA sr,S A3nn
LDY dp A4nn
LDA dp A5nn
LDX dp A6nn
LDA [dp] A7nn
TAY A8
LDA #const A9nn
TAX AA
PLB AB
LDY addr ACnnnn
LDA addr ADnnnn
LDX addr AEnnnn
LDA long AFnnnnnn
BCS nearlabel B0nn

LDA (dp),Y B1nn
LDA (dp) B2nn
LDA (sr,S),Y B3nn
LDY dp,X B4nn
LDA dp,X B5nn
LDX dp,X B6nn
LDA [dp],Y B7nn
CLV B8
LDA addr,Y B9nnnn
TSX BA
TYX BB
LDY addr,X BCnnnn
LDA addr,X BDnnnn
LDX addr,X BEnnnn
LDA long,X BFnnnnnn
CPY #const C0nn
CMP (dp,X) C1nn
REP #const C2nn
CMP sr,S C3nn
CPY dp C4nn
CMP dp C5nn
DEC dp C6nn
CMP [dp] C7nn
INY C8
CMP #const C9nn
DEX CA
WAI CB
CPY addr CCnnnn
CMP addr CDnnnn
DEC addr CEnnnn
CMP long CFnnnnnn
BNE nearlabel D0nn
CMP (dp),Y D1nn
CMP (dp) D2nn
CMP (sr,S),Y D3nn
PEI (dp) D4nn
CMP dp,X D5nn
DEC dp,X D6nn
CMP [dp],Y D7nn
CLD D8
CMP addr,Y D9nnnn
PHX DA
STP DB
JMP [addr] DCnnnn
CMP addr,X DDnnnn
DEC addr,X DEnnnn
CMP long,X DFnnnnnn
CPX #const E0nn
SBC (dp,X) E1nn
SEP #const E2nn
SBC sr,S E3nn
CPX dp E4nn
SBC dp E5nn
INC dp E6nn
SBC [dp] E7nn
INX E8
SBC #const E9nn
NOP EA
XBA EB

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 49 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

CPX addr ECnnnn
SBC addr EDnnnn
INC addr EEnnnn
SBC long EFnnnnnn
BEQ nearlabel F0nn

SBC (dp),Y F1nn
SBC (dp) F2nn
SBC (sr,S),Y F3nn
PEA addr F4nnnn
SBC dp,X F5nn

INC dp,X F6nn
SBC [dp],Y F7nn
SED F8
SBC addr,Y F9nnnn
PLX FA

XCE FB
JSR (addr,X) FCnnnn
SBC addr,X FDnnnn
INC addr,X FEnnnn
SBC long,X FFnnnnnn

6502 Microprocessor Family

Sun, 23 Jan 2022 17:05:58 UTC 50 / 50Peter Mount, Area51.dev & Contributors CC BY-SA

2.3 - Opcode Matrix
Instructions shown in an Opcode Matrix

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Opcode Matrix Legend

 Register Memory Implicit Math Logic Flow Interrupt Special Extension

BRK

00nn
2 7

ORA (dp,X)

01nn
2 6

COP const

02nn
2 7

ORA sr,S

03nn
2 4

TSB dp

04nn
2 5

ORA dp

05nn
2 3

ASL dp

06nn
2 5

ORA [dp]

07nn
2 6

PHP

08
1 3

ORA #const

09nn
2 2

ASL A

0A
1 2

PHD

0B
1 4

TSB addr

0Cnnnn
3 6

ORA addr

0Dnnnn
3 4

ASL addr

0Ennnn
3 6

ORA long

0Fnnnnnn
4 5

BPL nearlabel

10nn
2 2

ORA (dp),Y

11nn
2 5

ORA (dp)

12nn
2 5

ORA (sr,S),Y

13nn
2 7

TRB dp

14nn
2 5

ORA dp,X

15nn
2 4

ASL dp,X

16nn
2 6

ORA [dp],Y

17nn
2 6

CLC

18
1 2

ORA addr,Y

19nnnn
3 4

INC A

1A
1 2

TCS

1B
1 2

TRB addr

1Cnnnn
3 6

ORA addr,X

1Dnnnn
3 4

ASL addr,X

1Ennnn
3 7

ORA long,X

1Fnnnnnn
4 5

JSR addr

20nnnn
3 6

AND (dp,X)

21nn
2 6

JSL long

22nnnnnn
4 8

AND sr,S

23nn
2 4

BIT dp

24nn
2 5

AND dp

25nn
2 3

ROL dp

26nn
2 5

AND [dp]

27nn
2 6

PLP

28
1 4

AND #const

29nn
2 2

ROL A

2A
1 2

PLD

2B
1 5

BIT addr

2Cnnnn
3 4

AND addr

2Dnnnn
3 4

ROL addr

2Ennnn
3 6

AND long

2Fnnnnnn
4 5

BMI nearlabel

30nn
2 2

AND (dp),Y

31nn
2 5

AND (dp)

32nn
2 5

AND (sr,S),Y

33nn
2 7

BIT dp,X

34nn
2 4

AND dp,X

35nn
2 4

ROL dp,X

36nn
2 6

AND [dp],Y

37nn
2 6

SEC

38
1 2

AND addr,Y

39nnnn
3 4

DEC A

3A
1 2

TSC

3B
1 2

BIT addr,X

3Cnnnn
3 4

AND addr,X

3Dnnnn
3 4

ROL addr,X

3Ennnn
3 7

AND long,X

3Fnnnnnn
4 5

RTI

40
1 6

EOR (dp,X)

41nn
2 6

WDM

42nn
2 0

EOR sr,S

43nn
2 4

MVP srcbk,
dstbk

44nnnn
3 0

EOR dp

45nn
2 3

LSR dp

46nn
2 5

EOR [dp]

47nn
2 6

PHA

48
1 3

EOR #const

49nn
2 2

LSR A

4A
1 2

PHK

4B
1 3

JMP addr

4Cnnnn
3 3

EOR addr

4Dnnnn
3 4

LSR addr

4Ennnn
3 6

EOR long

4Fnnnnnn
4 5

BVC
nearlabel

50nn
2 2

EOR (dp),Y

51nn
2 5

EOR (dp)

52nn
2 5

EOR (sr,S),Y

53nn
2 7

MVN srcbk,
dstbk

54nnnn
3 0

EOR dp,X

55nn
2 4

LSR dp,X

56nn
2 6

EOR [dp],Y

57nn
2 6

CLI

58
1 2

EOR addr,Y

59nnnn
3 4

PHY

5A
1 3

TCD

5B
1 2

JMP long

5Cnnnnnn
4 4

EOR addr,X

5Dnnnn
3 4

LSR addr,X

5Ennnn
3 7

EOR long,X

5Fnnnnnn
4 5

RTS

60
1 6

ADC (dp,X)

61nn
2 6

PER label

62nnnn
3 6

ADC sr,S

63nn
2 4

STZ dp

64nn
2 3

ADC dp

65nn
2 3

ROR dp

66nn
2 5

ADC [dp]

67nn
2 6

PLA

68
1 3

ADC #const

69nn
2 2

ROR A

6A
1 2

RTL

6B
1 6

JMP (addr)

6Cnnnn
3 5

ADC addr

6Dnnnn
3 4

ROR addr

6Ennnn
3 6

ADC long

6Fnnnnnn
4 5

BVS nearlabel

70nn
2 2

ADC (dp),Y

71nn
2 5

ADC (dp)

72nn
2 5

ADC (sr,S),Y

73nn
2 7

STZ dp,X

74nn
2 4

ADC dp,X

75nn
2 4

ROR dp,X

76nn
2 6

ADC [dp],Y

77nn
2 6

SEI

78
1 2

ADC addr,Y

79nnnn
3 4

PLY

7A
1 4

TDC

7B
1 2

JMP (addr,X)

7Cnnnn
3 6

ADC addr,X

7Dnnnn
3 4

ROR addr,X

7Ennnn
3 7

ADC long,X

7Fnnnnnn
4 5

BRA
nearlabel

80nn
2 3

STA (dp,X)

81nn
2 6

BRL label

82nnnn
3 4

STA sr,S

83nn
2 4

STY dp

84nn
2 3

STA dp

85nn
2 3

STX dp

86nn
2 3

STA [dp]

87nn
2 6

DEY

88
1 2

BIT #const

89nn
2 2

TXA

8A
1 2

PHB

8B
1 3

STY addr

8Cnnnn
3 4

STA addr

8Dnnnn
3 4

STX addr

8Ennnn
3 4

STA long

8Fnnnnnn
4 5

BCC
nearlabel

90nn
2 2

STA (dp),Y

91nn
2 5

STA (dp)

92nn
2 5

STA (sr,S),Y

93nn
2 7

STY dp,X

94nn
2 4

STA dp,X

95nn
2 4

STX dp,Y

96nn
2 4

STA [dp],Y

97nn
2 6

TYA

98
1 2

STA addr,Y

99nnnn
3 4

TXS

9A
1 2

TXY

9B
1 2

STZ addr

9Cnnnn
3 4

STA addr,X

9Dnnnn
3 4

STZ addr,X

9Ennnn
3 5

STA long,X

9Fnnnnnn
4 5

LDY #const

A0nn
2 2

LDA (dp,X)

A1nn
2 6

LDX #const

A2nn
2 2

LDA sr,S

A3nn
2 4

LDY dp

A4nn
2 3

LDA dp

A5nn
2 3

LDX dp

A6nn
2 3

LDA [dp]

A7nn
2 6

TAY

A8
1 2

LDA #const

A9nn
2 2

TAX

AA
1 2

PLB

AB
1 4

LDY addr

ACnnnn
3 4

LDA addr

ADnnnn
3 4

LDX addr

AEnnnn
3 4

LDA long

AFnnnnnn
4 5

BCS nearlabel

B0nn
2 2

LDA (dp),Y

B1nn
2 5

LDA (dp)

B2nn
2 5

LDA (sr,S),Y

B3nn
2 7

LDY dp,X

B4nn
2 4

LDA dp,X

B5nn
2 4

LDX dp,X

B6nn
2 4

LDA [dp],Y

B7nn
2 6

CLV

B8
1 2

LDA addr,Y

B9nnnn
3 4

TSX

BA
1 2

TYX

BB
1 2

LDY addr,X

BCnnnn
3 4

LDA addr,X

BDnnnn
3 4

LDX addr,X

BEnnnn
3 4

LDA long,X

BFnnnnnn
4 5

CPY #const

C0nn
2 2

CMP (dp,X)

C1nn
2 6

REP #const

C2nn
2 3

CMP sr,S

C3nn
2 4

CPY dp

C4nn
2 3

CMP dp

C5nn
2 3

DEC dp

C6nn
2 5

CMP [dp]

C7nn
2 6

INY

C8
1 2

CMP #const

C9nn
2 2

DEX

CA
1 2

WAI

CB
1 3

CPY addr

CCnnnn
3 4

CMP addr

CDnnnn
3 4

DEC addr

CEnnnn
3 6

CMP long

CFnnnnnn
4 5

BNE
nearlabel

D0nn
2 2

CMP (dp),Y

D1nn
2 5

CMP (dp)

D2nn
2 5

CMP (sr,S),Y

D3nn
2 7

PEI (dp)

D4nn
2 6

CMP dp,X

D5nn
2 4

DEC dp,X

D6nn
2 6

CMP [dp],Y

D7nn
2 6

CLD

D8
1 2

CMP addr,Y

D9nnnn
3 4

PHX

DA
1 3

STP

DB
1 3

JMP [addr]

DCnnnn
3 6

CMP addr,X

DDnnnn
3 4

DEC addr,X

DEnnnn
3 7

CMP long,X

DFnnnnnn
4 5

CPX #const

E0nn
2 2

SBC (dp,X)

E1nn
2 6

SEP #const

E2nn
2 3

SBC sr,S

E3nn
2 4

CPX dp

E4nn
2 3

SBC dp

E5nn
2 3

INC dp

E6nn
2 5

SBC [dp]

E7nn
2 6

INX

E8
1 2

SBC #const

E9nn
2 2

NOP

EA
1 2

XBA

EB
1 2

CPX addr

ECnnnn
3 4

SBC addr

EDnnnn
3 4

INC addr

EEnnnn
3 6

SBC long

EFnnnnnn
4 5

BEQ
nearlabel

F0nn
2 2

SBC (dp),Y

F1nn
2 5

SBC (dp)

F2nn
2 5

SBC (sr,S),Y

F3nn
2 7

PEA addr

F4nnnn
3 5

SBC dp,X

F5nn
2 4

INC dp,X

F6nn
2 6

SBC [dp],Y

F7nn
2 6

SED

F8
1 2

SBC addr,Y

F9nnnn
3 4

PLX

FA
1 4

XCE

FB
1 2

JSR (addr,X)

FCnnnn
3 8

SBC addr,X

FDnnnn
3 4

INC addr,X

FEnnnn
3 7

SBC long,X

FFnnnnnn
4 5

Instruction

Opcode hex
Size bytes Cycle count

